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ABSTRACT
Background: Alzheimer’s disease (AD) is a progressive neurological disorder with no specific curative medications. Sophisticated clinical skills
are crucial to optimize treatment regimens given the multiple coexisting comorbidities in the patient population.

Objective: Here, we propose a study to leverage reinforcement learning (RL) to learn the clinicians’ decisions for AD patients based on the longi-
tude data from electronic health records.

Methods: In this study, we selected 1736 patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. We focused on the
two most frequent concomitant diseases—depression, and hypertension, thus creating 5 data cohorts (ie, Whole Data, AD, AD-Hypertension,
AD-Depression, and AD-Depression-Hypertension). We modeled the treatment learning into an RL problem by defining states, actions, and
rewards. We built a regression model and decision tree to generate multiple states, used six combinations of medications (ie, cholinesterase
inhibitors, memantine, memantine-cholinesterase inhibitors, hypertension drugs, supplements, or no drugs) as actions, and Mini-Mental State
Exam (MMSE) scores as rewards.

Results: Given the proper dataset, the RL model can generate an optimal policy (regimen plan) that outperforms the clinician’s treatment regi-
men. Optimal policies (ie, policy iteration and Q-learning) had lower rewards than the clinician’s policy (mean �3.03 and �2.93 vs. �2.93, respec-
tively) for smaller datasets but had higher rewards for larger datasets (mean �4.68 and �2.82 vs. �4.57, respectively).
Conclusions: Our results highlight the potential of using RL to generate the optimal treatment based on the patients’ longitude records. Our
work can lead the path towards developing RL-based decision support systems that could help manage AD with comorbidities.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurological disor-
der causing cognitive impairment and brain atrophy. Approx-
imately 5.8 million people in the United States age 65 years
and older live with AD and approximately 60%–70% of 50
million people worldwide with dementia are estimated to be
diagnosed with AD.1 Currently, the exact etiology of AD is
still unknown.2 b-Amyloid plaque formation and aggrega-
tion,2 apolipoprotein E (Apo E) gene along with various envi-
ronmental factors3 could be involved in the AD pathogenesis
and additional risk factors; like vascular diseases, type-2

diabetes, traumatic brain injury, epilepsy, depression, smok-
ing, diet, physical exercise, and alcohol consumption4 could
be involved in the dementia pathogenesis. Due to the
unknowns of AD’s etiology and risk factors, drug develop-
ment has not made any significant progress and available
drugs like cholinesterase inhibitors (ChEIs) and memantine
only treat the disease superficially. These drugs only help to
temporarily ameliorate memory and thinking problems, but
they do not treat the root cause of AD nor slow the rate of
decline of a patient’s condition.5 They are aimed at modifying
just the disease symptoms.6,7
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AD management is further complicated by the high rate of
comorbidities observed in patients.8 Approximately 90% of
AD patients are diagnosed with comorbid conditions,9 and
the large majority with chronic diseases such as hypertension
and depression.10,11 Patients are very often treated with medi-
cations for other comorbidities. The relationship between AD
and these comorbid conditions warrants further investigation
on whether they act as risk factors or by-products of AD,
which further complicates the management of AD. Medica-
tion management ends up being a trial until a regimen tempo-
rarily relieves symptoms. As a result, it could take years of
experience for a physician to medically manage AD with
comorbidities.12 Instead of trialing different regimens for tem-
porary symptom relief, a medication regimen learning tool
can be beneficial in providing junior physicians with the nec-
essary information to best treat AD patients diagnosed with
comorbidities. The tool can suggest individualized drug com-
binations based on patients’ state, rather than having physi-
cian’s trial several medications. This would increase time
efficiency in selecting the best treatment option; thus, equip-
ping physicians with the resources to provide the best, timely
care for patients.

Various artificial intelligence (AI) techniques have been
used to create tools for detecting AD.13,14 The authors in
Ref.15 report a multimodal recurrent neural network to pre-
dict conversions from mild cognitive impairment (MCI) to
AD using longitudinal biomarkers as well as cross-sectional
neuroimaging data. The use of efficient convolutional neural
network architectures using a small number of parameters to
prevent overfitting yielded high MCI to AD predictive per-
formance (average AUC of 0.925) in Ref.16 To improve early-
stage AD diagnosis, the authors in Ref.17 provide a data aug-
mentation strategy to reduce overfitting problems. Further,
their model generates a heatmap on brain images to improve
explainability. Reinforcement learning (RL) has been used to
predict and model 10-year cognition trajectories.18 While
multiple studies exist for the diagnosis, subtyping, drug repur-
posing, and biomarker identification of AD,19 there is a
dearth of studies involving AI tools for optimizing treatment
regimens for AD patients.

AI has made it possible to create medication regimen learn-
ing tools. Recently, it has been used to create such decision-
support system models to predict drugs based on patient
reviews.20 RL is an AI technology to learn a set of actions that
can reward the most during the interaction of an agent in a
specific environment (eg, a computer game). RL has achieved
great success in diverse applications that require human inter-
actions (eg, Go21), suggesting its capability of learning
human-ish behavior. Healthcare is quickly adapting RL into
their systems, as seen in regimen plans learned from Parkin-
son’s disease (PD)21 and Sepsis.22 This technology can learn
from existing clinical data to provide senior-level experience
to junior physicians with less experience, potentially revolu-
tionizing the transfer of information in healthcare. To this
end, we propose a study to learn a RL-based model for the
clinical practice of junior clinicians in managing AD patients.
This model consists of states, actions, and rewards, and is
designed to check the current state, explore different actions,
and pick the one that maximizes future rewards (Figure 1).
This model outperforms traditional data-derived methods,
such as the transition probability-based model, particularly
for patients with concomitant conditions (ie, depression and
hypertension). This is evidenced by the comparison of the

Mini-Mental State Exam (MMSE) scores from the data to the
MMSE predicted by our RL model. The results of our study
demonstrate that the proposed model can generate a clini-
cian’s regimen plan for AD patients.

This work makes several valuable contributions to the field.
Firstly, it breaks new ground by applying RL to learn treat-
ment regimens for AD at the level of clinicians. This innova-
tive approach opens up exciting possibilities for optimizing
patient care and treatment outcomes. Secondly, the develop-
ment of models that generate treatment plans for AD, Hyper-
tension, and Depression represents a significant advancement
in addressing the complex nature of multiple comorbidities in
patients. By considering these interconnected conditions, the
models offer a more comprehensive approach to personalized
healthcare. Thirdly, the extensive testing of these models
across 2 large longitudinal datasets, namely the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and the Australian
Imaging, Biomarkers & Lifestyle Flagship Study of Ageing
(AIBL) databases, ensures robustness and generalizability of
the findings. This thorough evaluation provides a solid foun-
dation for further research and clinical implementation.
Lastly, the provision of an open-source Python-based toolbox
not only promotes transparency and reproducibility but also
empowers the scientific community to build upon and
enhance the existing work. Overall, these contributions collec-
tively advance our understanding and potential treatment
options for AD and its associated comorbidities.

MATERIALS AND METHODS
Data

The data are derived from ADNI database (adni.loni.usc.
edu), the most frequently used open-access data in the phar-
macogenomic studies for AD.14 ADNI is a longitudinal multi-
center study designed to support advances in AD prevention
and treatment by developing clinical, imaging, genetic, and
biochemical biomarkers.23 Data used in the preparation of
this article were obtained from the ADNI database (adni.loni.
usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging, positron emission tomog-
raphy, other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the
progression of MCI and early AD. For up-to-date informa-
tion, see www.adni-info.org. For testing the generalizability
of our models, we used the AIBL database (https://aibl.csiro.
au/). Data were collected by the AIBL study group. AIBL
study methodology has been reported previously (Ellis et al.
2009).24

RL-based modeling

The traditional medical method of treating AD is assessing a
patient’s current state and prescribing medication accord-
ingly, then following up on symptoms afterward. We utilized
RL to measure AD progression based on selected consecutive
decisions. This consecutive decision-making nature of RL
models is best described as a Markov decision process. A
Markov decision process consists of states, actions, and
rewards where a state is Markovian if and only if the next
state is dependent only on the current state. It is based on an

1646 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 10

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
https://aibl.csiro.au/
https://aibl.csiro.au/


agent at a certain state selecting different actions to maximize
the rewards. The defined factors are described below.

State s

We define states as a finite set of a patient’s progression state
in the latest clinic visit. Raw data on participants’ states were
converted to discrete states. We picked up statistically signifi-
cant features like Alzheimer’s Disease Assessment Scale
(ADAS13) and age (Table 1) to predict the MMSE score using
regression. We then chose the significant variables and
derived a decision tree (Supplementary Figure S5 and Table
S1) to predict the MMSE scores. The decision tree divides
each data into different ranges and then predicts the MMSE
score. For example, an age of fewer than 70 years and an
ADAS score of more than 20 could predict an MMSE score of
20. The predicted MMSE scores at the leaf nodes of a decision
tree are our derived discrete states (Supplementary Figure S5).
We grouped each visit according to the criteria specified by
the decision tree and ignored states with less than 50 occur-
rences to avoid states without enough visits.

Action a

We defined actions as a finite set of medications. Six combina-
tions of drugs based on usage frequency were used: ChEIs,
memantine, ChEIsþmemantine, antihypertensive drugs, other
supplements, and no drugs. Hypertension drugs and other
supplements are also included to explore treatment across 5
data cohorts: Whole, AD, AD-Hypertension, AD-Depression,
and AD-Depression-Hypertension. Please note that hyperten-
sion drugs and supplements are not traditional treatments for
AD and are for patients with coexisting hypertension and
other conditions.25,26

Reward r

We defined reward as the clinical assessment of the patient’s
medication response. While multiple assessment scores are
used in clinical practice (eg, Rey Auditory Verbal Learning
Test [RAVLT] tests, Montreal Cognitive Assessment
[MoCA]), we used MMSE assessment scores in our study
because it is a widely used tool to assess cognitive function in
both routine clinical practice and research settings.27,28 The
max score for MMSE is 30 points, with ranges from 20 to 24

Figure 1. Pipeline of reinforcement learning-based regimen plan. (1) The raw data that store all the scores of tests like Alzheimer’s Disease Assessment

Scale (ADAS), Montreal Cognitive Assessment (MoCA), Clinical Dementia Rating Scale Sum of Boxes (CDRSB), age, and so on. It also stores the

medication applied and rewards based on Mini-Mental State Exam (MMSE) score. (2) Thirteen different states are defined using the decision tree. (3) A

reinforcement learning model is prepared based on states from subfigure (2) and actions and rewards from data in subfigure (1). (4) Best medication/

action is selected for each state after using reinforcement learning.
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indicating mild dementia; 13 to 20 indicating moderate
dementia, and less than 12 indicating severe dementia.29 We
calculated the difference between MMSE in the current visit
and the previous visit to measure the rate of progression of
AD. A discount rate gamma, 0� c�1 was also introduced to
determine the present value of future rewards.30 We used the
discount factor c¼ 0.3. Our total discounted return is repre-
sented by:

Gt ¼ Rtþ1 þ c Rtþ2 þ c2 Rtþ3 þ � � � ¼
X1

k¼0
ck � Rtþ1þk:

Policies

The policy is a map from state to action. It maps an action to
every possible state in the system. In other words, it can be
described as a possible strategy an agent uses in each state to
get rewards and it is defined by probability. For example, if an
agent uses an action a1 on state s1 and a2 on state s2, and so on,

it can be considered a policy of the agent. On the state action
map, for state s1, a1 has the highest probability value and for
state s2, a2 has the highest probability value. There are many
possible policies as different actions can be used for the same
states; however, one policy will yield the maximum reward.

Optimal policy learned by RL learning

We generated policies using 2 different RL methods—model-
free Q-learning and model-based policy iteration. Model-free
Q-learning is an algorithm that uses trial and error to learn
the best action to take in a given state. It does not require any
prior knowledge of the environment and can be used to solve
complex problems. Model-based policy iteration, on the other
hand, uses a model of the environment to determine the best
action to take. It requires prior knowledge of the environment
and can be used to solve problems more efficiently. Here, the
prior knowledge of the environment is encoded by the transi-
tion state probabilities estimated from the training data.

Table 1. Disease states classification based on a decision tree

Data cohort

Disease state

State ADAS13

RAVLT

immediate

RAVLT

learning Age CDRSB MOCA FDG

Whole Data S0 (,19.5] (,22.5] (,77]
S1 (,19.5] (,22.5] [78,)
S2 (,19.5] (22.5,) (,1.8]
S3 (,19.5] (22.5,) (1.8, ]
S4 (19.5, 25.8] (,1.8] (,19.5]
S5 (19.5, 25.8] (1.8, ] (,19.5]
S6 (19.5, 25.8] (19.5, 21.5]
S7 (19.5, 25.8] (21.5, ]
S8 (25.8, 36.2] (, 1.8] (,19.5]
S9 (25.8, 36.2] (1.8, 4.2] (,19.5]

S10 (25.8, 36.2] (4.2, ] (,19.5]
S11 (36.2, 42.7]
S12 (42.7,)

AD S13 (,18.5] (,1.5]
S14 (,18.5] (1.5,)
S15 (18.5, 25.2] (,21.5] (,6]
S16 (18.5, 25.2] (,21.5] (6,)
S17 (18.5, 25.2] (21.5,)
S18 (25.2, 35.8) (,3.2]
S19 (25.2, 35.8) (3.2,) (,5]
S20 (25.2, 35.8) (3.2,) (5,)
S21 (35.8,)

AD-Hyper-
tension/
AD-Hyper-
tension-
Depression

S22 (,17.5] (,20.5]
S23 (17.5, 22.2] (,20.5]
S24 (, 22.2] (20.5,)
S25 (22.2, 25.2] (, 13.5]
S26 (22.2, 25.2] (13.5,)
S27 (25.2, 31.2] (,1.8]
S28 (25.2, 31.2] (1.8, 3.2]
S29 (25.2, 31.2] (3.2,)
S30 (31.2, 41.8] (,75]
S31 (31.2, 41.8] (75,)
S32 (41.8,)
S33 (25.2, 31.2] (,3.2]

AD-
Depression

S34 (, 22.2] (, 3.75] (, 20.5]
S35 (, 22.2] (3.75,) (, 20.5]
S36 (, 22.2] (20.5,)
S37 (22.2, 25.2] (,3.75] (, 21.5]
S38 (22.2, 25.2] (3.75,) (, 21.5]
S39 (25.2, 35.8] (,3.25]
S40 (25.2, 35.8] (3.25,)
S41 (35.8,) (,12.5]
S41 (35.8,) (12.5,)
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Model-free Q-learning is more general and can be used in a
variety of situations, while model-based policy iteration is
more specific and can be used to solve problems more quickly.
Model-based methods rely on planning and transition proba-
bilities, while model-free methods rely on learning or
experience.30

Policy iteration

First, we compute the state-value function v(s) for an arbitrary
policy p. Value function, v(s) is a function that estimates
future rewards on a given state when performing a particular
action based on transition probability. The transition proba-
bility is the probability of transitioning from one state, s, to
another state, s0 after a certain action is applied. This is called
policy evaluation. After computing the value function for a
policy, we check if there is a particular action that gives a bet-
ter value for that state. This is repeated until a better policy is
found and is called policy improvement. We repeat these eval-
uation and improvement cycles until we find out the optimum
policy.

Q-learning

We used the off-policy temporal difference algorithm to create
more variety for optimal policies. Q-learning uses Q-value
from a Q-table to find the best actions for each state. The Q-
value is an estimation of how good an action is at a particular
state. The Q-table is an m*n matrix where m is the number of
states and n is the number of actions. An agent applies an
action at a particular state and updates the Q-table with the
reward it receives for that state-action combination. Then the
agent applies different actions for the same state. Through
numerous repetitions, the best action for each state is picked
and the Q-table becomes stable. The speed at which Q-table is
updated is dependent on a parameter alpha, 0�a<, 1 the
learning rate. We set our alpha to 0.05 so that the Q-table
converges after enough trials. It is different from policy itera-
tion because it gives an optimal policy independent of the pol-
icy being followed. In other words, it is not dependent on
transition probability derived from the dataset.

Clinicians’ policy by a data-driven approach

We used transition probability to find the clinician’s policy
from the data. We followed an approach similar to policy iter-
ation. We used policy evaluation and policy improvement
process just once based on the existing transition probability
from the data and made the resultant policy as the clinician’s
policy. Since the policy is totally based on the data, we can
safely assume it is very close to the real clinician’s policy.

Other policies

We also created zero policy and random policy to compare
them with our RL-based and clinician policies. Zero policy
implies that in each state no drugs are applied as actions and
random policy implies that random drugs are applied as
actions without assessing the patient’s condition.

Experiment design and evaluation
Evaluation and comparison

We used offline evaluation to estimate the value of target poli-
cies (policies being learned) based on a behavior policy (policy
used to generate behavior) derived from the offline log data. It
is very useful in settings where online interaction involves
high risks and costs (eg, medication recommendation

systems).31 We used importance sampling (IS), commonly
used off-policy evaluations, to estimate expected values under
one distribution given samples from another.30 It estimates
the value of a target policy from behavior policy derived from
the data by reweighing states based on the frequency of their
occurrence.32 In our study, we used stepwise weighted impor-
tance sampling (step-WIS) which is the most practical point
estimator among the importance of sampling techniques
because of its low variance21,33 and error.34

Tests

• Test 1: The first test evaluated the impact of data size in
generating policies from AD data in order to create a pol-
icy with a higher rate of accuracy and closest to the clini-
cian’s policy. We split 60%/20%/20% for training,
validation, and testing. With the training set, we further
divided it into 4 scenarios relating to different data sizes
(eg, 100%, 80%, 50%, 30%) to feed the models. All
training groups were trained 50 times to generate an opti-
mal policy. We repeated this cycle 100 times to eliminate
any potential bias in our final reward. A total of 13 states
and 6 actions were used for this test.

• Test 2: The second test evaluated how the proposed work
will perform over the different patient cohorts (eg, patients
with different concomitant diseases). We separated the
data into 5 groups based on the disease diagnosis: AD (9
states, 6 actions), AD-Hypertension (10 states, 6 actions),
AD-Depression (9 states, 6 actions), and AD-Depression-
Hypertension (10 states, 6 actions). Hypertension and
depression were the 2 most prevalent concomitant diseases
among patients in the data. Also, depression is one of the
most prevalent psychiatric conditions in AD patients.35–37

We then followed the same splitting method of 60%/20%/
20% for training, validation, and testing, respectively. We
also wanted to check how different RL’s medicine predic-
tion is for different states compared to the clinician’s
prediction.
We tried to check the generalizability of our model by test-
ing our algorithms on a different dataset. For this, we
picked the AIBL dataset. In order for us to perform the
model on this dataset, we had to find variables common to
both the ADNI and AIBL datasets. We found this included
Clinical Dementia Rating, Neuropsychological test scores,
and laboratory screening data. Specifically, these were the
common variables we used: “RID,” “VISCODE,”
“AXT117,” “BAT126,” “HMT3,” “HMT7,” “HMT13,”
“HMT40,” “HMT100,” “HMT102,” “CDGLOBAL,”
“LIMMTOTAL,” “LDELTOTAL.” We trained our model
on ADNI data with these variables and then tested them
on the AIBL dataset. Our research indicated that the medi-
cation (actions) for AIBL data were not similar to the
actions in ADNI data. Therefore, the AIBL was used for
testing alone. We assigned actions to the AIBL dataset
using the clinician policy obtained from the ADNI data.
The data cohorting for AIBL were similar to the ADNI
dataset. The results of these experiments are shown in Sup-
plementary Figure S1.

• Test 3: For our third test, we wanted to see how our pro-
posed Q-learning model performed with 2 different
MMSE score (reward) cohorts, MMSE greater than and
MMSE smaller than the average MMSE of all patients.
First, we calculated the average MMSE of each patient for
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all their visits and then calculated the average MMSE of
all the patients. If a patient’s average MMSE score for all
the visits was less than the average of all patients, the
patient was categorized as JR clinician patients and the
remaining patients were categorized as SR clinician
patients. We then compared the JR clinician-patient
cohort and SR clinician-patient cohort with the whole
patient cohort. We then followed the same splitting
method used in Test 2.

• Test 4: For our fourth test, we wanted to learn how our
proposed Q-learning model performed over different
learning rates, a. This test was to confirm our Q-learning
was robust enough to learn the real clinician’s policy. We
used our already existing AD cohort and compared the
results for alphas from 0.1 to 0.9. We then followed the
same splitting method used in Test 2.

• Test 5: For our final test, we wanted to learn how our pro-
posed Q-learning model performed over the different
number of states while keeping the data constant. We
changed the total number of discrete states given by a deci-
sion tree based on the number of samples. For example,
for Whole Data, we got 13 states when we used leaf nodes
of a decision tree that had more than 50 samples and 9
states with leaf nodes that had more than 200 samples and
compared the results (Figure 6). We then followed the
same splitting method used in Test 2.

RESULTS
Patient cohort

We selected patients based on the following criteria: a mini-
mum of 2 clinic visits, complete medical history, and clinical
assessment data (Table 2). A total of 1736 patients were
selected (957 males and 779 females). Across all selected
patients, the total number of visits was 10 082. The mean
monthly visits and mean number of visits per patient were
32.17 months and 6.42 visits, respectively. The patient
cohorts we selected are defined as follows:

• The “Whole Data” cohort includes all patients, regardless
of whether they have been diagnosed with any condition
or prescribed any medication.

• The “AD” cohort comprises patients diagnosed with AD
or those who have been prescribed medications specifically
for AD. These patients may or may not have other medical
conditions. It is important to note that we also include
patients with MCI in the AD cohort.

• The “AD-Hypertension” cohort consists of patients diag-
nosed with or treated for AD (including MCI), as well as
patients with hypertension who may have AD, MCI, or
are cognitively normal (CN).

• The “AD-Depression” cohort includes patients diagnosed
with or treated for AD (including MCI), as well as patients
with depression who may have AD, MCI, or CN.

• The “AD-Depression-Hypertension” cohort includes
patients diagnosed with or treated for AD (including
MCI), patients with depression who may have AD, MCI,
CN, as well as patients with hypertension who may have
AD, MCI, or CN.

It is important to note that we have included CN patients in
the AD-Hypertension, AD-Depression, and AD-Depression-
Hypertension cohorts. This is because AD pathology can be
present in individuals without evident memory loss, and these
CN individuals may already exhibit subtle brain atrophy.
Including these patients helps reduce bias and allows for train-
ing a more robust model.

Test 1

Test one (Figure 2) revealed that appropriate data size
resulted in RL performance comparable to the clinician’s per-
formance. As the data samples increased, results in policy iter-
ation and Q-learning displayed increasingly better results that
are comparable, if not better than the clinician’s performance.
For example, the 30% train set had a lower policy iteration
score [mean¼�3.03] and Q-learning score [mean¼�2.93]
than the clinician’s policy score [mean¼�2.93]. This is in
contrast to the performances with 100% train set, where the
policy iteration [mean¼�4.68] is at the level of and the Q-
learning [mean¼�2.82] outperforms the clinician’s policy
[mean¼�4.57]. A more detailed analysis (Supplementary
Figure S7) reveals a cutoff of 50% training data, beyond
which the Q-learning method outperforms the clinician pol-
icy. This increase in performance of the policy iteration algo-
rithm, as well as the Q-learning algorithm demonstrates the
scope for improvement with additional data. Overall, optimal

Table 2. Patient demographics for the different cohorts of data (Whole Data, AD data, AD-Hypertension data, AD-Depression data, and AD-Hypertension-

Depression data)

Features

Cohorts

Whole Data AD AD-Hypertension AD-Depression AD-Hypertension-Depression

No. of patients 1736 430 510 479 549
No. of visits (SD) 6.42 (3.64) 7.10 (3.65) 7.35 (3.81) 7.14 (3.66) 7.35 (3.18)
No. of months of follow-up (SD) 32.17 (25.75) 41.00 (26.89) 43.22 (27.79) 41.54 (26.87) 43.46 (27.74)
No. of male patients 957 257 305 283 324
No. of female patients 779 173 205 196 225

No. of Patients in Cohorts

Medications Whole data AD AD-Hypertension AD-Depression AD-Hypertension-Depression

Supplements/others 4573 1176 1502 1415 1701
No drugs taken 4500 1016 1246 1124 1337
Cholinesterase inhibitors 418 418 418 418 418
Memantine 176 176 176 176 176
Antihypertensive drugs 270 125 270 147 270
Memantine-cholinesterase inhibitors 145 145 145 145 145
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policy consistently outperformed zero policy and random pol-
icy. Random policy [mean¼�4.65] consistently outper-
formed zero policy which repeatedly yielded the lowest mean
reward of �10.86.

The suggestions made by both optimal policies and clini-
cians’ policies are somewhat similar (Table 3). Both policy
iteration and Q-learning start off by recommending no drugs
when patients are in the first state whereas the clinicians rec-
ommend memantine. In State 11, all the policies recommend
hypertension whereas, in State 12, the recommendation by
each policy is completely different. In state 6, both optimal
policies recommend hypertension whereas clinicians recom-
mend memantine. Supplementary Figure S2 has different
actions recommendation for each state for AD-Depression-
Hypertension.

Test 2

We noticed that the model is comparable with the clinician’s
policy when data are split around AD itself. Since

hypertension and depression are frequently seen in AD
patients and our actions are mainly the medication for AD,
policy iteration outperformed the clinician’s policy in all 3
cohorts (Figure 3). We also concluded that Q-learning’s
rewards are more coherent than clinicians’. For all the data
cohorts, Q-learning’s reward predictions are scattered around
0 (lower negative values) whereas clinician reward predictions
are scattered around higher negative values rewards (Supple-
mentary Figure S6).

Test 3

We found that the SR clinician cohort outperformed the JR
clinician cohort for all data cohorts. The difference between
the SR clinician policy and the SR Q-learning policy was not
consistent throughout the data cohort. In the AD data, the SR
Q-learning policy [mean �0.09] had worse results than the
SR Clinician policy [mean 0.20]. In the AD-Depression-
Hypertension data cohort, the SR Q-learning policy [mean
�0.58] outperformed the JR clinician policy [mean �0.72].

Figure 2. Comparison of rewards represented by MMSE score (y-axis) for different-sized data for all policies. Policy iteration and Q-learning are the

optimal policies, and the clinician policy is derived from the data. The edge of the boxes represents the boundaries of the middle 2 quartiles of the data,

the orange line represents the median, and the whiskers show the range of the data excluding the outliers. The Student’s t test is used to provide

P-values between the different data groups shown.

Table 3. Comparison of recommended action for policy iteration, Q-learning, and clinician’s policy for whole data

Actions

Clinicians Q-learning Policy iteration

States No In Me Hy Ni So No In Me Hy Ni So No In Me Hy Ni So

S 0
S 1
S 2
S 3
S 4
S 5
S 6
S 7
S 8
S 9
S 10
S 11
S 12

Note: The actions are represented by different colors.
No: no drugs; In: inhibitors; Me: memantine; Hy: hypertension drugs; Ni: combination of memantine and inhibitors; So: supplements/other drugs.
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On the contrary, the JR Q-learning policy outperformed the
JR Clinician policy across all data cohorts (Figure 4).

Test 4

We also confirmed that the Q-learning policy is not always
better with high learning rate (alpha) values. There is a gen-
eral trend of increasing rewards from a learning rate of 0.1–
0.4. Then, the reward is stable from the alpha value of 0.3 to
around 0.8 with a mean from �1.28 to �1.30 and then it
decreases at 0.9 with a reward of �1.42 (Figure 5).

Test 5

We did not find any concrete connection between changing
the number of states and mean reward prediction (Figure 6).
In the AD data cohort, 10 states from leaf nodes with a sam-
ple size greater than 50 predicted better mean reward
[mean¼�1.34] compared to 7 states from leaf nodes with a
sample size greater than 200 [mean¼�1.54] and 9 states from
leaf nodes with a sample size greater than 100
[mean¼�1.46]. In the AD-Depression data cohort, 9 states
from leaf nodes with a sample size greater than 50 predicted
worse mean reward [mean¼�0.97] compared to 6 states
from leaf nodes with a sample size greater than 100
[mean¼�0.95] (Figure 6). This analysis for Whole Data
cohort is in Supplementary Figure S4.

DISCUSSION

Our current study proposed an RL-based model to investigate
the optimal AD treatment regimen plan based on the elec-
tronic health record. We adopted 2 RL methods—model-free
Q-learning and model-based policy iteration—to generate the
regimen plans. In comparison to the policy (ie, treatment regi-
men plan) learned simply from the existing data (ie, clinician’s
policy based on transition probability-based method), the
experiments displayed RL models that can optimize the treat-
ment regimen for AD given sufficient patient data as sug-
gested by previous studies with Parkinson’s21 and sepsis.22

However, our current study has notable differences compared
to those studies. First, we argue that the AI models can only
estimate an optimal policy, which is not comparable to, nor
substitutes for a real clinician’s policy. This is unlike previous
studies that strongly suggest AI-based policies can outperform
physician policies.21 Secondly, in previous studies, all the poli-
cies were generated based on the on-policy methods (eg,
SARSA and value interaction21,22), which consider the target
policy to be identical to the behavior policy. This is problem-
atic in an offline setting because our target policy is very dif-
ferent from the behavior policy as we are using different
actions for different states in order to find an optimal action
for a particular state. As a response, we conducted an evalua-
tion that fairly compared the offline model-free models (ie, Q-
learning) with the behavior policy. Lastly, we incorporated

A B

DC

Figure 3. Comparison of different optimal policies (policy iteration and Q-learning) and the clinician’s policy for different concomitant disease cohorts. (A)

Comparison for AD patients, (B) Comparison for AD patients with concomitant disease hypertension only, (C) Comparison for AD patients with

depression, and (D) Comparison for AD patients with hypertension and depression.
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the importance of data volume to learn an optimal model for
real-world implementation in addition to focusing on the RL
model performance. Experiments on different data cohorts
revealed better RL-based model performance in larger data
cohorts. Our experiment showed a harmonization should be
achieved between the data and method to generate an optimal
policy. In our study, we found the optimal policy by repeating
experiments with the training and validation data 50 times.
For generalizability, we used 100 bootstrap samples of train-
ing and testing data on the resulting optimal policy to find
our final reward. This study provided a robust guide for treat-
ment plan learning and has adaptable potential in guiding the
treatment of AD patients for junior physicians.

Our results were promising and demonstrated high poten-
tial for RL-based models to learn real clinician’s policies;
however, there are a few limitations to address. First, we

could not obtain definitive results from the latest offline RL
algorithm, like Conservative Q-Learning (CQL), as it consis-
tently predicted supplements as the optimal action. This is
due to the discrepancy in prescription frequency between sup-
plements (N¼ 4573) and specific medications such as ChEIs
(N¼418), memantine (N¼176), antihypertensive drugs
(N¼270), and memantine-ChEIs (N¼ 145). The numbers
reported here represent instances of prescriptions given during
individual visits. Since patients are prescribed multiple drugs
or supplements during the same visit or during multiple visits,
there is no clear pathway to rebalance the data with respect to
medications either via undersampling or via oversampling.
For example, removing patient data who were prescribed sup-
plements would also remove medication samples and vice
versa. This is in contrast with previous studies examining PD
which did not have higher rates of prescribed supplements

Figure 5. Comparison of Q-learning policy for different learning rates for AD cohort. The learning rate is from 0.1 to 0.9.

Figure 4. Comparison of clinician policy reward and Q-learning policy reward between JR clinician, senior clinician, and combined data cohorts.
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(N¼ 442) compared to PD medications (Levodopa¼ 1157
and Dopamine agonist¼447). There is a lot of potentials to
perform this study by using the latest RL algorithms like CQL
if evenly distributed medication data are collected in the
future.

A second limitation lies in the accuracy of calculating dis-
ease progression with only cognitive assessment data. We
could not incorporate neuroimaging and other biomarkers
data as these were not available. Although there is no precise
way to measure the progression of AD, neuroimaging has
been widely used to diagnose AD and monitor disease pro-
gression.38 Due to the unavailability of such data, we had to
rely on commonly used cognitive tests like MMSE, ADAS,
and CDRSB. A more in-depth study can be performed by
incorporating other measures (eg, mobility) or biomarkers
(eg, amyloid-beta and tau).

Thirdly, we also encountered a lot of negative values in our
reward. It could be the result of the small dataset, inconsistent
data entry for MMSE scores for patients, and the high num-
ber of missing values in the record. We tried to minimize the
missing values by filling the missing spot with the data from
previous visits. The rewards would be better if accurate
MMSE scores were present for each visit for all the patients.

Lastly, there was no active RL environment to test our algo-
rithms as it is almost impossible to have an active testing

environment for medical patients. Off-policy RL algorithms
are only successful when they receive direct feedback from an
active environment (eg, a video game). In addition, we do not
have sufficient data to perform a thorough confounding fac-
tor analysis with respect to factors such as age, medical his-
tory, etc. With a proper dataset with evenly distributed
medications and fewer missing values, we could use highly
effective offline RL algorithms like CQL in the future to avoid
this problem.39

CONCLUSIONS

While there are a plethora of studies using AI techniques for
the diagnosis of AD, there is a lack of methods applied for
learning treatment regimens. In this article, we presented 2
RL techniques for learning treatment regimens for AD. In par-
ticular, the policy iteration and Q-Learning methods were
used to learn the treatment regimens. We used 2 large open-
source longitudinal databases—ADNI and AIBL for this pur-
pose. The ADNI dataset was used for training, validation,
and testing. The AIBL dataset was used for testing the gener-
alizability of the models. Our results demonstrate that RL has
the potential to learn treatment policies whose outcome is
comparable to or better than clinician policies.

A B

DC

Figure 6. Comparison of Q-learning policy for the different number of states for different data cohorts. The number of states is based on the number of

samples on the leaf node of a decision tree.
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